The logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x. So enter the base and value in given input box, then press calculate button, the system will automatically calculate the Log value.
To calculate any "log base of" use this fromula, which is given below-
Where,
logb(x) | Equal to |
---|---|
log2(4) | 2 |
log2(8) | 3 |
log8(3) | 0.52832083357372 |
log2(2) | 1 |
log2(1000) | 9.9657842846621 |
log2(3) | 1.5849625007212 |
log2(1) | 0 |
log2(6) | 2.5849625007212 |
log4(2) | 0.5 |
log2(10) | 3.3219280948874 |
log2(0) | -INF |
log2(256) | 8 |
log2(9) | 3.1699250014423 |
log3(7) | 1.7712437491614 |
log10(10) | 1 |
log4(16) | 2 |
log5(1) | 0 |
log10(1) | 0 |
log2(1024) | 10 |
log3(1) | 0 |
log5(2) | 0.43067655807339 |
log8(2) | 0.33333333333333 |
log2(5) | 2.3219280948874 |
log2(1000000) | 19.931568569324 |
log3(9) | 2 |
log3(27) | 3 |
log2(32) | 5 |
log10(0) | -INF |
log1(2) | NAN |
log4(5) | 1.1609640474437 |
log2(16) | 4 |
log2(2048) | 11 |
log3(2) | 0.63092975357146 |
log6(36) | 2 |
log2(512) | 9 |
log2(11) | 3.4594316186373 |
log10(5) | 0.69897000433602 |
log1(1) | NAN |
log10(100) | 2 |
log2(12) | 3.5849625007212 |
log4(1) | 0 |
log2(15) | 3.9068905956085 |
log2(10000) | 13.287712379549 |
log3(5) | 1.4649735207179 |
log10(1000) | 3 |
log5(125) | 3 |
log3(6) | 1.6309297535715 |
log2(65536) | 16 |
log3(3) | 1 |
log27(9) | 0.66666666666667 |
log2(7) | 2.8073549220576 |
log5(3) | 0.68260619448599 |
log8(4) | 0.66666666666667 |
log3(4) | 1.2618595071429 |
log4(4) | 1 |
log3(8) | 1.8927892607144 |
log3(10) | 2.0959032742894 |
log5(625) | 4 |
log2(4096) | 12 |
log2(20) | 4.3219280948874 |
log9(3) | 0.5 |
log8(8) | 1 |
log10(3) | 0.47712125471966 |
log4(3) | 0.79248125036058 |
log2(128) | 7 |
log2(500) | 8.9657842846621 |
log5(25) | 2 |
log16(4) | 0.5 |
log3(243) | 5 |
log2(4000) | 11.965784284662 |
log2(100000) | 16.609640474437 |
log6(216) | 3 |
log2(8192) | 13 |
log25(5) | 0.5 |
log5(7) | 1.2090619551222 |
log2(100) | 6.6438561897747 |
log4(8) | 1.5 |
log7(49) | 2 |
log2(50) | 5.6438561897747 |
log7(1) | 0 |
log2(200) | 7.6438561897747 |
log2(40) | 5.3219280948874 |
log2(64) | 6 |
log16(2) | 0.25 |
log4(7) | 1.4036774610288 |
log16(8) | 0.75 |
log8(20) | 1.4406426982958 |
log3(81) | 4 |
log4(64) | 3 |
log4(6) | 1.2924812503606 |
log5(10) | 1.4306765580734 |
log5(6) | 1.1132827525594 |
log5(8) | 1.2920296742202 |
log10(2) | 0.30102999566398 |
log7(9) | 1.1291500681072 |
log3(12) | 2.2618595071429 |
log10(4) | 0.60205999132796 |
log5(5) | 1 |
log2(30) | 4.9068905956085 |
log5(50) | 2.4306765580734 |
log3(20) | 2.7268330278608 |
log4(20) | 2.1609640474437 |
log4(32) | 2.5 |
log2(25) | 4.6438561897747 |
log10(7) | 0.84509804001426 |
log2(255) | 7.9943534368589 |
log3(0) | -INF |
log2(16384) | 14 |
log9(81) | 2 |
log2(32768) | 15 |
log81(3) | 0.25 |
log2(13) | 3.7004397181411 |
log8(64) | 2 |
log10(1000000) | 6 |
log8(1) | 0 |
log2(24) | 4.5849625007212 |
log3(18) | 2.6309297535715 |
log8(32) | 1.6666666666667 |
log2(5000) | 12.287712379549 |
log64(2) | 0.16666666666667 |
log36(6) | 0.5 |
log5(100) | 2.8613531161468 |
Thank you for visiting!