Log Base 16384 of 2

What is Log Base 16384 of 2 or log16384(2)?


Log16384(2)

= 0.071428571428571

Formula How to

Share This Calculation:
Reference This Calculation:

How to find what is Log Base 16384 of 2? The logarithm of a number to a given base is the exponent to which the base must be raised to produce the number. In mathematical terms, if "b" is the base and "x" is the number, then the logarithm of "x" to the base "b" is written as logb(x) and is defined as the exponent "y" such that b^y = x.

The logarithm of a number to a given base is a useful tool in many areas of mathematics and science, including finance, engineering, and physics. It's also used in solving exponential equations and in graphing logarithmic functions.

In mathematics, the most common logarithms are logarithms to the base 10, which are called common logarithms, and logarithms to the base e, which are called natural logarithms. The natural logarithm is denoted by the symbol ln, and has special properties in calculus and other areas of mathematics.

To calculate any "log base of" use this fromula, which is given below-

logb(x) =
loge(x)/loge(b)
; x>0, b>1;

Where,

  • b = base;
  • x = value;

For calculation, here's how to calculate log base 16384 of 2 using the formula above, step by step instructions are given below

  1. Input the value as per formula.
    log16384(2) =
    loge(2)/loge(16384)
  2. Calculate the log value for numerator and denominator part.
    0.69314718055995/9.7040605278392
  3. After simplify the fraction, you will get the result. Which is,
    0.071428571428571

logb(x) Equal to
log16384(1) 0
log16384(2) 0.071428571428571
log16384(3) 0.11321160719437
log16384(4) 0.14285714285714
log16384(5) 0.16585200677767
log16384(6) 0.18464017862294
log16384(7) 0.20052535157554

log16384(2) or Log Base 16384 of 2 is equal to 0.071428571428571.

loge(16384) 9.7040605278392
log10(16384) 4.2144199392957

loge(2) 0.69314718055995
log10(2) 0.30102999566398